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…to probe the

hypothetical

question: If water

were linear, what

would be its

nature?

his report records a light-hearted (yet rigorous) study
to determine the importance of the bend in the water
molecule. We present the answer to what could be a
rather open-ended question posed in a computational

chemistry course to an advanced undergraduate student with
access to a personal computer with one of several quantum
chemical programs. We use commonly available
computational chemical techniques as well as qualitative
molecular orbital theory to probe the hypothetical question: If
water were linear, what would be its nature?

Introduction
In the spirit of Flatland [1], where the three-dimensional world
is reduced to two dimensions, we consider the implications of
linear water as determined by HOMO–LUMO arguments and
high quality ab initio calculations. Our purpose is twofold: to
examine an intellectually interesting question (and possibly
gain knowledge of the physical forces that bind “real” water),
and   to   introduce   people  to  a  few  tricks   and   features  of

T
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computational chemistry. Those with a knowledge of computational chemistry should
skip the next section. Those who find their curiosity piqued by the computational tools
should consult the excellent introductory book by Lowe [2].

“Were water linear … it would not be a liquid at ambient temperatures at the earth’s
surface” [3]. This would seem to be an accurate statement if we subscribe to
conventional theories about the association of water molecules. While a true
understanding of the many-body interactions that could lead to the formation of a
linear, liquid water is too complex for us, we can study the intermolecular binding of
individual water monomers by examination of the binding in (H2O)2 using
conventional HOMO–LUMO arguments [4] as well as high quality ab initio
calculations [5]. From this pursuit, we can draw conclusions about the existence of a
waterlike liquid in our hypothetical world.

Methods, Basis Sets, and Units
The mysterious world of computational chemistry can be entered fearlessly with a little
knowledge. The objective is to solve the (analytically) “unsolvable” Schrödinger
equation,

üH EΨ Ψ= (1)

for multielectron systems. The assumption that Hartree made is that the state
wavefunction of a molecule can be described by the product of orbital wavefunctions.
The wavefunction in a more accurate Hartree–Fock method is an antisymmetrized
determinant rather than a simple product. In the Hartree–Fock method the
Hamiltonian, üH HF , that describes the system is related to the wavefunction; the
relevant equations are solved to self-consistency by an iterative process.

All molecular properties can be computed from the wavefunction. Basis sets are
functions that allow the description of the wavefunction of a molecule. We assume that
atoms have hydrogen-like orbitals, and molecules formed by the combination of these
atoms have molecular orbitals which are distorted atomic orbitals. Thus we use linear
combinations of atomic orbitals, each of which is a Slater function, e x−ζ . For example,

a hydrogen 1s atomic orbital is represented by a single Slater function, π ζ ζ− −1
2

3
2e x

,
where the orbital exponent, ζ , in atomic units is equal to one. These Slater functions,
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for computational expediency, are constructed from several Gaussian functions with
fixed coefficients,

( )e c e c e c ex x x x− − − −≅ + +ζ α α α
1 2 3

1
2

2
2

3
2

(2)

The use of one basis function to describe each occupied atomic orbital is referred to as
single zeta (where zeta is the orbital exponent). The simplest basis set commonly
employed is a single zeta basis named STO-3G, where STO stands for Slater Type
Orbital and 3G indicates three Gaussian functions grouped to approximate the one
STO. As orbitals in molecules do differ from those in atoms, it is useful to include
more than one basis function per orbital, to use multiple zetas. It is also useful to
increase flexibility by using functions of greater complexity. Because orbitals are
described by spherical harmonics, an obvious function to use would be a harmonic of
the next orbital (azimuthal) quantum number. Thus, for first-row (heavy) atoms (Li–
Ne) this would be a d function, while for hydrogen this would be a p function. These
functions are called polarization functions, as they allow orbitals to polarize and bend.
The most often employed basis set is a double zeta plus polarization function basis set,
the 6–31G** basis of Pople, et al. The name of this basis set corresponds to the
convention of the Pople group; each digit refers to the number of Gaussian functions
(primitives) contracted to one function (Table 1). The numbers before the dash indicate
the number of contracted Gaussian functions per core orbital, while those after the
dash are for the valence orbitals. The first asterisk (star) indicates polarization on
heavy atoms; the second indicates polarization on hydrogen atoms. Other symbols,
such as +, f, and †, may be appended; these refer to additional special functions.

While the Hartree–Fock method is fast and accurate, an even more accurate method
would allow electrons to respond to the instantaneous (rather than the average)
potentials of the other electrons. The correlation of electrons and the lowering of
energy that this permits can be computed in many ways. A systematic method used for
including the affect of correlation corrects the initial Hamiltonian, in this case the
Hartree–Fock Hamiltonian, üH HF , by the addition of a perturbing term,

ü ü üH H H= + ′HF λ (3)

The λ  term determines the extent of the perturbation and ranges from 0 (where there is
no perturbation) to  1 (with the full perturbation applied).  Møller and Plesset devised a
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TABLE 1.  The 6-31G** Basis Set Composition For Typical First- And Second-Row Atoms.

H C

Atomic Orbital Gaussians/ Gaussians/
Contracted zeta Polarization Contracted zeta Polarization
Basis Functions (Second Star) Basis Functions (First Star)

1s 1/1 <= ζ1 6/1

1/1 <= ζ2

2s 3/1 <= ζ1

1/1 <= ζ2

2px, , 2py, 2pz 1/1 <= * 3/1 <= ζ1

1/1 <= ζ2

2dxz, 2dxy, 2dyz, 2dx2–y2, 2dz2
or 1/1 <= *

2d–3, 2d–2, 2d–1, 2d1,2d2, 2d3

commonly used scheme, which adds back the missing interelectron repulsion in the
perturbing Hamiltonian,

( )ü ′ = −
〈

∑ ∑H
r

i
iji j i

1
ν HF (4)

The second-order Møller–Plesset (MP2) energy correction to the Hartree–Fock (HF)
energy, which comes from the interaction of each occupied (i) and each virtual (j)
orbital from the Hartree–Fock calculation with this Hamiltonian is,

∆E
H

E E
H S

ij

i j
ij ij=

′

−
′ ≈ −

2

0 0
,    (5)

The summation of this term over all pairs of occupied and virtual orbitals accounts for
roughly 75% of the correlation energy.

With the Hartree–Fock or MP2-corrected wavefunction in hand, it is possible to
calculate the charge on an atom. A common method, not without flaws, is the so-called
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Mulliken charge technique. As molecular orbitals are built from atomic orbitals
(represented by the basis functions), the molecular orbital coefficients, cao,mo, can be
used to determine the number of electrons (the population) in each atomic orbital. The
Mulliken (population analysis) method assigns electron density in an atomic orbital to
that atom and evenly partitions the electron density of overlapping atomic orbitals. The
resulting expression for the Mulliken charge is

qatomic
net charge

= qnuclear
charge

− q
j

j

AOs

∑
electronic
charge

= qnuclear
charge

− ( n
i
c

ji

2

i

MOs

∑
AO population

+ 1
2 2 n

i
c

ji
c

ki
S

jk
i

MOs

∑
overlap population
shared electrons( )

j< k

AOs

∑
j

AOs

∑
j

AOs

∑ ) (6)

The 3N–6 natural vibrational frequencies (or the 3N–5 frequencies of a linear molecule
such as a linear water molecule), the normal modes, can be calculated analytically from
the Hartree–Fock and Møller–Plesset second-order wavefunctions. An examination of
the resultant harmonic frequencies can give an estimate of the force constants for
bonds and angles.

The “natural” units used in computational chemistry are the atomic units, hartrees (Eh)
and often millihartrees (mEh). Conversion factors to other commonly used units are
provided in Table 2. Frequently used software includes the Gaussian, Spartan, and
Jaguar programs. Information about these packages can be found on the WWW at
www.gaussian.com, www.wavefun.com, and www.schrodinger.com, respectively.

The Rigorous Calculations
As they are accurate and widely used, we perform our ab initio calculations using the
restricted Hartree–Fock/6–31G** and Møller–Plesset second-order/6–31G** models.
An MP2/6–31G** optimized linear water molecule has a total energy of –76.1658 Eh

(HF = –75.9686 Eh) and the geometry depicted in 1.

H O H

0.932 Å

1
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TABLE 2.  The Conversion Between Units Employed in Computational Chemistry

and Other Common Units.

1 hartree 1 millihartree

(Eh) (mEh) cm–1

kilocalorie 627.503 0.627 2.859 × 10–3

eV 27.2107 0.027 1.24 × 10–4

kilojoule 149.977 0.150 6.83 × 10–4

hartree 1 0.001 4 × 10–6

millihartree 1000 1 4.56 × 10–4

The corresponding fully optimized structure for H2O at this level of ab initio theory
has a total energy of –76.2224 Eh(HF = –76.0229 Eh). The structure, 2,

H

O

H

0.961 Å

103.9°

2

closely agrees with the experimental result (Table 3). The optimized linear water
molecule thus is 56.7 mEh (35.6 kcal mol–1) above the bent molecule in the MP2/6–
31G** model. The linear molecule in the Hartree–Fock model, without the inclusion
of correlation energy, is higher in energy than the bent form by 54.2 mEh (34.0 kcal
mol–1). In this system, the inclusion of correlation energy yields only a small correction
to the Hartree–Fock energy.

The strength of an interaction between molecules can be determined from the
difference between the energies of the individual (lone) molecules and the interacting
molecules. The problem with approximating association energies in this way is that
there is a computational artifact that lowers the energy of the interacting molecules. A
reasonably sized set of functions cannot describe orbitals completely, thus a molecule
brought into proximity can and will lend functions, and thus lead to an artificial
lowering  of  energy.  This  counterintuitive  orbital-mixing  or  basis-set-superposition
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TABLE 3 . The ab Initio Optimized and Accepted Experimental Structures of The

Water Molecule.

Model rOH(Å) ∠HOH

HF/STO-3G 0.9894 100.02°

HF/6-31G** 0.9430 105.97°

MP2/6-31G** 0.9607 104.36°

Experimental 0.9572 104.54°

error can be corrected by the computational trick of calculating the energy of a
molecule produced by presence of the functions of another molecule, but without the
other molecule’s nuclei or electrons. The basis-set-superposition error was examined
for these calculations, and it was determined not to be significant.

The strength of the hydrogen bond in the optimized structure of the linear water dimer
is 14.1 mEh (8.8 kcal mol–1). The corresponding Hartree–Fock value is
10.2 mEh(6.4 kcal mol–1) with the geometry of 3.

H O H

1.802 Å H

O

H

3

This value is greater than that for the binding of bent water monomers, which is
11.1 mEh (7.0 kcal mol–1) in the MP2/6–31G** model, and 8.7 mEh (5.4 kcal mol–1)
without correlation energy. It possesses the geometry shown in 4, which agrees with
experimental results as well (Table 4).

H

O H

1.966 Å

112.8°

O
H

H

4
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TABLE 4 . The ab initio Optimized and Accepted Experimental Structures of

Water Dimer From [8].

H

O
H

O
H

H

rOO

θa

θd

Model rOO(Å) θd θa

HF/STO-3G 2.740 0.2° 124.0°

HF/6-31G** 2.980 5.3° 117.6°

MP2/6-31G** 2.910 9.1° 100.2°

Experimental 2.976 ± 0.001 –1 ± 1° 122.4 ± 0.9

After studying a dimer of two linear water molecules, we also examine a dimer formed
from one linear and one normal water molecule. Looking at the dimer formed from two
bent water monomers, it appears that the geometry is determined by the orientation of
the lone pairs, 5.

H

O H O
H

H

5

If this were the most important feature of bonding, a linear hydrogen donor and a bent
normal monomer acceptor would align one lone pair. Consequently the hydrogens of
the acceptor would be bent down or up from the axis of the linear water. The energy-
optimized structure is actually planar, 6.

H O H HO
H

6
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The bending down of the hydrogens in the normal water dimer appears to be a result
not of the orientation of the lone pairs, but rather of the Coulombic repulsion between
the positive hydrogens of the acceptor and the positive hydrogen of the donor bending
up. Further support for this view comes from the electrostatic surface of H2O. The
diffuse lone-pair lobes are only distinct at very small distances, and thus it appears that
the positive hydrogens must dictate the structure. Flattening the hydrogen of the donor
(bending it down) allows the two hydrogens of the acceptor to lift up.

The Mulliken charges show how the alignment of the quadrupoles determines the
binding of the linear water dimer, 7.

H O H

H

O

H

qH = 0.394
qH =  0.412

qO = -0.861

qH =  0.430

qO = -0.804

qH =  0.430

7

In normal water dimer the dipole–dipole interactions are not wholly responsible for the
structure because a simple dipole–dipole model indicates that the dipoles of the
monomers should be parallel, 8.

H

O

H

H

O

H

+ +

8

The dominant interaction in water dimer appears to be a combination of dipole,
quadrupole, and higher multipole interactions, rather than a HOMO–LUMO
interaction, 9.
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H

O H O
H

H

qH = 0.326

qH =  0.365

qO = -0.724

qH =  0.353

qO = -0.673

qH =  0.353

9

The larger charges in the linear complex can explain the enhancement of binding over
the bent complex. Looking at the change in the charge on the atoms involved in the
hydrogen bond, it would appear that the binding would be greater by a factor of 1.35 in
the linear complex than in a normal water complex,

( )

( )

( )( )
( )( )

q q

r

q q

r

q q

q q
r r

O
L

H
L

OH
L

O
B

H
B

OH
B

O
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H
L

O
B

H
B OH

L
OH
B   

2

2

0804 0 412

0 673 0 365
135= = = ≈

. .

. .
. ; (7)

In fact, the MP2/6–31G** model yields a harmonious result. The calculated energies
differ by a factor of 1.28,

141
111

128
.
.

.= (8)

An understanding of the ordering of molecular orbitals allows us to construct a simple
argument. The increase in charge on the oxygen and consequently the hydrogens of the
linear water can be explained by the increased s character of the O–H bond. The sp3

hybridization of the normal water molecule is converted to sp when the molecule is
straightened [6]. The decrease in s character of the lone pairs is responsible for the
higher total energy of the linear monomer, and the increase in s character of the
orbitals involved in the O–H bonds increases the charge on the oxygen. Unlike the
hydrogenic orbitals, the 2s orbital on oxygen is lower in energy than the 2p
orbitals, 10.
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Osp3

H1s

10

Hence, the sp hybrid is lower in energy than the sp3 hybrid and gives a more polar O–
H bond, 11.

Osp

H1s

11

While the identification of specific molecular orbitals is difficult with sophisticated ab
initio methods such as those employed here, we know that the HOMO of the hydrogen
acceptor would describe a lone pair, and the LUMO of the donor would be directed
toward this pair. If HOMO–LUMO interactions governed the binding, we would
expect torsion about the hydrogen bond axis in normal water dimer to require less
energy than bending the hydrogen bond, which would disturb the orientation of the
HOMO lone pair. The twelve normal modes of water dimer include six modes of the
two monomers, which are only slightly perturbed, and six new “dimer modes” (Table 5
and Table 6). These normal modes of the fully optimized water dimer in the MP2/6-
31G† model [7] include a torsion frequency of 229.0 cm–1. The modes that involve
bending around the hydrogen bond fall in the range 181.5–405.1 cm–1. In both torsion
and bending, the hydrogens of the acceptor and the hydrogen not involved in the
hydrogen bond of the donor will travel closer to each other. Thus the comparable
frequencies of torsion and bending imply that the same coulombic repulsion between
the positive hydrogens determines the frequencies in both types of motion.
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TABLE 5 . The ab initio Calculated and Accepted Experimental Normal Modes of

Water Molecule.

Frequency (cm–1)

Mode MP2/6-31G** Experimental [9]

1 1684.3 1595

2 3913.4 3652

3 4040.2 3756

TABLE 6 . The ab initio Calculated Normal Nodes for Water Dimer.

Mode Frequence (cm–1)

1 113.4

2 181.5

3 201.5

4 228.9

5 405.1

6 617.5

7 8 1686.0 1718.0

9 10 3873.8 3900.0

11 12 3995.2 4017.0

Conclusion
We have attempted to combine rigorous molecular orbital calculations with a
qualitative HOMO–LUMO description of bonding. The use of the dimers ignores the
wealth of higher-order multibody interactions, thus giving us only a gross estimate of
the properties of liquid water. It has been shown that two-body interactions in water
are the dominant force, so our conclusions from this study are valid. We found
inconsistency between simple HOMO–LUMO arguments and the results of our more
rigorous ab initio calculations. Two conclusions appear to follow from this inquiry:
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1. The forces holding water molecules together (i.e., hydrogen bonds) are primarily
electrostatic in origin.

2. Starting from the assumption that linear water monomers exist, linear liquid water
would exist, bound by the same electrostatic forces responsible for normal water. At
earth’s ambient temperature it would not only be a liquid, but it would most likely
have a boiling point higher than water! As to the other colligative properties, I am still
pondering whether we could skate on the substance; molecular dynamics calculations
of putative structures might be revealing.
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